If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+20X-1280=0
a = 1; b = 20; c = -1280;
Δ = b2-4ac
Δ = 202-4·1·(-1280)
Δ = 5520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5520}=\sqrt{16*345}=\sqrt{16}*\sqrt{345}=4\sqrt{345}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{345}}{2*1}=\frac{-20-4\sqrt{345}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{345}}{2*1}=\frac{-20+4\sqrt{345}}{2} $
| 2(u-65)=32 | | 7y-29=69 | | 3(n–1)=6 | | 12⋅h=10 | | 5m+4+7m=10 | | 33=t/4+27 | | 4p-17=51 | | x^2+10x=47 | | 2x+7=242x+7=24 | | 43=w/4-(-35) | | 7(f+1)=98 | | 90=g/6+82 | | 12n+6=28.5 | | s/3+2=9 | | 5(a+3)-9=-(4a-6)+1 | | 4(a+3)-9=-(4a-6)+1 | | 6b-14=58 | | 19=3n-26 | | r+3/5=25/6 | | 65+77+71+x=360 | | -1/2(16m+8)=4m-12m-4 | | -(1)/(2)(16m+8)=4m-12m-4 | | Y=2/12x+6 | | Y=1/6x+6 | | u=48-5u | | 6x+2x-4=28 | | 2(2x-1)=9x | | 3x-9=-17+5x | | 36=-12w−12w | | 2.75x+3=300 | | 3x=1.5x+15000 | | 3.25x+3=300 |